The Effect of Migrant Regularization on Working **Conditions**

Francesco Amodio ¹ Elia Benveniste ² Mario F. Carillo ³ Marc Riudavets-Barcons ⁴

¹McGill University

²UPF

3UAB

⁴HGSE & University of Helsinki

Introduction

- Migrant workers often face poor working conditions, e.g. health risks, low safety, long hours
- Undocumented migrants exposed because they cannot access formal labor markets
- Does providing work permits improve working conditions?
- Answering this question empirically is challenging:
 - ► Lack of data to identify undocumented migrants
 - ► Hard to proxy for working conditions
 - ► Need exogenous variation

Many examples from the news

La muerte de un temporero en Murcia: jornadas de 11 horas a más de 40 grados y sin agua

El fallecimiento de Eleazar Blandón, un jornalero abandonado en un centro de salud de Murcia, rompe a una familia y expone la vulnerabilidad de los migrantes en el campo

Scorching Heat Is Contributing to Migrant Deaths

Amid a relentless heat wave, some migrants are succumbing to heat exhaustion. More than 500 people have died of various causes this year while trying to cross from Mexico.

Caldo record e morti sul lavoro: due vittime nel bresciano e una a Jesi

a cura di Redazione Cronaca

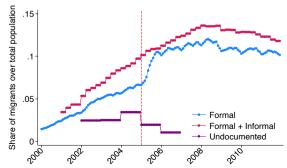
Introduction

- Migrant workers often face poor working conditions, e.g. health risks, low safety, long hours
- Undocumented migrants exposed because they cannot access formal labor markets
- Does providing work permits improve working conditions?
- Answering this question empirically is challenging:
 - ► Lack of data to identify undocumented migrants
 - Hard to proxy for working conditions
 - ► Need exogenous variation

This paper

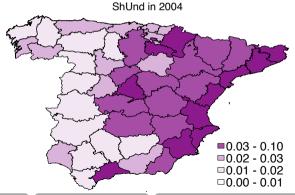
- Study an amnesty program in Spain in 2005 which regularized about 600,000 immigrants
- Data on number undocumented migrants in each province
- Proxy working conditions by heat-related discharges (HRD). Relevant because:
 - ► Working outdoors in agriculture and/or construction
 - ► High temperatures
 - ► Long hours
- Use extremely hot days (conditional on province and year-month FE) as additional random variation
- Measure the effect of a very hot day (>35C) on HRDs before vs. after the reform, and in provinces with a high vs. low share of undocumented migrants over total population

Preview

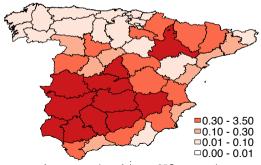

- After the reform, one extra day > 35C causes:
 - ➤ 2.2 p.p lower probability of at least one HRD in high-share regions vs. low-share regions
 - ▶ The dependent variable (DV) is a dummy (0 no HRD, \geq 1 HRD)
 - ► Baseline mean=0.095 ⇒ effect 23.2%
 - ► No effect for low-share regions
- Effect is very robust
- Overall effect on total discharges is non-negative so these are likely to be lower bounds

Literature

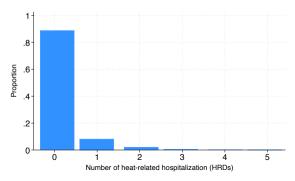
- Effects of amnesty programs: (Kossoudji and Cobb-Clark, 2002; Devillanova et al., 2018; Cascio and Lewis, 2019; Bahar et al., 2021; Elias et al., 2022)
- 2. Undocumented migration and labor exploitation: (Comino et al., 2020; Dipoppa, 2024)
- 3. Health and climate: (Barreca et al., 2016; Carleton et al., 2022; Ballester et al., 2023)


2005 Amnesty Program

- In February, the government granted work permits to undocumented migrants if:
 - ► The person was in the Municipal Registry of Population (Padrón) prior to August 2004
 - ► They were offered a working contract of at least 6 months
- Unexpected and did not have magnet effects (Montalvo, 2011; Elias et al., 2022)


Measuring Undocumented Migrants

- Usually, undocumented migrants are not registered in admin. data
- In Spain, they can register in Padrón (and have incentive to do so)
- $\bullet \ \mathsf{ShareUnd}_p = (\mathsf{Migrants}_p \mathsf{Work}\ \mathsf{Permits}_p)/\mathsf{Population}_p$
- HiUnd=1 if province has above median share (dark and very dark purple)


Temperature Data

- Daily maximum temperature for 5km×5km cells from STEAD (Serrano-Notivoli et al., 2019)
- Aggregate cells at the province level weighting by population (Carleton et al., 2022): $T_{p,d} = \sum_{m \in p} \frac{pop_m}{pop_n} \sum_{c \in p} \frac{T_c}{N_c}$
- Dd>35_{pym}= count $T_{p,d} > 35$ in province p in year-month ym

Heat-related Discharges

- Data from Hospital Registers (CMBD), near-universe of hospital discharges
- Focus on working-age population (age 16-64)
- In most province-months, there are no heat-related discharges (HRDs)
- Main dependent variable: Y_{pym} = 1 if there is at least 1 HRD, 0 otherwise

Data recap

- Municipal Registry and Work Permits:
 - Stock of residents by nationality and by province
 - Stock of work permits by province
- Hospital Registers (CMBD):
 - ► Universe of hospital admissions (2000-2015)
 - ► Variables: diagnosis, age, sex, type of financing, entry and exit date.
- Gridded daily climate data for Spain: (STEAD and SPREAD)
 - ► Maximum and minimum temperatures (1900-2014), precipitation (1950-2012)
 - ► Daily observations for 5km×5km cells (approx. 300 cells per province)
- Spanish Social Security Sample (MCVL):
 - ► Random sample of 4% of formal workers (2000-2015)
 - ► Variables: wages, type of contract, sector, demographics
- Labor Force Survey (EPA):
 - Proportion of migrant to native workers (formal and informal)

Summary statistics at baseline (2000-2004)

	Mean	S.d.	Min	Max	Obs.
Dummy HRD	0.095	0.294	0.000	1.000	2820
Dummy HRD (May-Sep)	0.201	0.401	0.000	1.000	1175
HRDs	0.170	0.695	0.000	11.547	2820
Dd>35	0.492	2.170	0.000	21.000	2820
Dd>35 (May-Sep)	1.180	3.239	0.000	21.000	1175
Undocumented	0.021	0.019	0.001	0.100	1128
Migrant	0.048	0.034	0.011	0.157	1128

Observations represent a month in a province in the period 2000-2004. HRDs are heat-related discharges.

Empirical Approach

Triple Difference-in-Difference

$$Y_{pym} = \beta_1 (Dd > 35_{pym}) + \beta_2 (Dd > 35_{pym} \times Post_{ym})$$

$$+ \beta_3 (Dd > 35_{pym} \times Post_{ym} \times HiUnd_p) + \beta_4 (Dd > 35_{pym} \times HiUnd_p)$$

$$+ \beta_5 (Post_{ym} \times HiUnd_p) + \beta_6 X_{pym} + \eta_{pm} + \alpha_{ym} + \varepsilon_{pym}$$

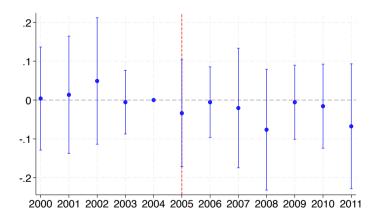
$$(1)$$

- $Dd > 35_{pym}$: # days where maximum temperature is above 35C
- *Post*_{ym} equals 1 after June 2005
- $HiUnd_p$ equals 1 if province p has above median share of undocumented migrants
- X_{pym} : 5-degree temperature bins, precipitations and controls, interacted with main regressors
- η_{pm} are province-month FE and α_{ym} are year-month FE

Triple DiD Results

	(1)	(2)	(3)	(4)	(5)
	OLS	OLS	OLS	OLS	Logit
Dd>35	0.020***	0.009	0.009	0.012	0.081
	(0.006)	(0.011)	(0.011)	(0.015)	(0.064)
Dd>35 \times Post	0.005	0.010	0.010	-0.001	0.049
	(0.006)	(0.008)	(0.008)	(0.014)	(0.077)
	+ +				
Dd>35 \times Post \times HiUnd	-0.022**	-0.022*	-0.022*	-0.033**	-0.176**
	(0.011)	(0.012)	(0.012)	(0.016)	(0.085)
Year×Month FE		√	√	√	✓
Prov×Month FE		\checkmark	\checkmark	\checkmark	
Full Controls			\checkmark	\checkmark	✓
May-Sep only				\checkmark	
R2	0.187	0.343	0.347	0.252	
Obs.	6768	6768	6768	2820	6624

Note: specifications (2)-(4) control for province linear and quadratic trends. Full controls include population (total and migrant) in 2003 and 2004, unemployment rate, employment in part-time, permanent, public, agricultural and hospitality jobs, average wage, days worked and a coastal dummy. Standard errors are clustered at the province level.


Results recap

- 1 more hot day is 2.2p.p. (baseline mean .095) **less likely** to result in a hospitalization in regions with a high share of undocumented migrants
- No effect for provinces with a low share of undocumented migrants
- Robustness:
 - Definition of undocumented share: Continuous share Top 25% Donut specification

 Quartiles
 - ► Standard errors: Province-level clustering Bootstrap
 - ► Others: Count DV Excluding 2008 Placebo Outcomes Leave out province Leave out year
- Are the results driven at all by the reform, or just following a trend? No evidence of a trend from an event study

No evidence of pre-amnesty trends

ullet Triple DiD coefficients replacing $Post_{ym}$ with year dummies

No controls

Fewer controls

Only summe

Only summer + controls

Continuous measure of und. migrants

Monthly event study

Simple DiD Results - Other discharges

$$Y_{pym} = \gamma_1 \left(Post_{ym} \times HiUnd_p \right) + \gamma_2 X_{pym} + \eta_p + \alpha_{ym} + u_{pym}$$
 (2)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	HRD	Cardio	Resp.	G.u.	lnj.	Intox.	Total
$Post \times HiUnd$	-0.051	-0.017	0.030	0.054	0.122	-0.456***	0.025
	(0.151)	(0.054)	(0.042)	(0.067)	(0.081)	(0.092)	(0.035)
Full Controls	√	√	√	√	√	✓	√
Mean DV	0.324	4.883	5.020	5.011	5.104	1.728	7.762
R2	0.387	0.975	0.971	0.968	0.956	0.741	0.995
Obs.	739	6767	6768	6768	6768	6073	6768

Note: controls include population (total and migrant) in 2003 and 2004, unemployment rate, employment in part-time, permanent, public, agricultural and hospitality jobs, average wage, days worked and a coastal dummy. Standard errors are clustered at the province and year-month level.

No contro

With contro

With full controls + continuous share of undocumented migrants

Asinh DVs

Event study

Conclusion

- We investigate the impact of work permits on working conditions
- After the amnesty in 2005, very hot days are less dangerous
- One additional hot day causes 25% lower probability of a hospitalization due to heat stroke in highly-exposed vs low-exposed provinces

Thank you!

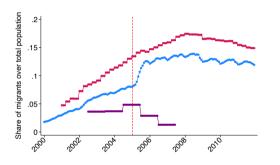
References I

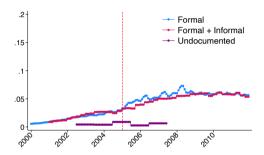
- Bahar, D., Ibáñez, A. M., and Rozo, S. V. (2021). Give me your tired and your poor: Impact of a large-scale amnesty program for undocumented refugees. *Journal of Development Economics*, 151:102652.
- Ballester, J., Quijal-Zamorano, M., Méndez Turrubiates, R. F., Pegenaute, F., Herrmann, F. R., Robine, J. M., Basagaña, X., Tonne, C., Antó, J. M., and Achebak, H. (2023). Heat-related mortality in europe during the summer of 2022. *Nature medicine*, 29(7):1857–1866.
- Barreca, A., Clay, K., Deschenes, O., Greenstone, M., and Shapiro, J. S. (2016). Adapting to climate change: The remarkable decline in the us temperature-mortality relationship over the twentieth century. *Journal of Political Economy*, 124(1):105–159.

References II

- Carleton, T., Jina, A., Delgado, M., Greenstone, M., Houser, T., Hsiang, S., Hultgren, A., Kopp, R. E., McCusker, K. E., Nath, I., et al. (2022). Valuing the global mortality consequences of climate change accounting for adaptation costs and benefits. *The Quarterly Journal of Economics*, 137(4):2037–2105.
- Cascio, E. U. and Lewis, E. G. (2019). Distributing the green (cards): Permanent residency and personal income taxes after the immigration reform and control act of 1986. *Journal of Public Economics*, 172:135–150.
- Comino, S., Mastrobuoni, G., and Nicolò, A. (2020). Silence of the innocents: Undocumented immigrants' underreporting of crime and their victimization. *Journal of Policy Analysis and Management*, 39(4):1214–1245.

References III

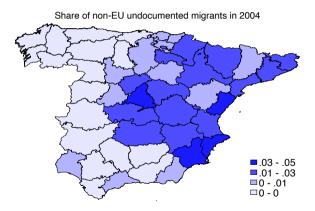

- Devillanova, C., Fasani, F., and Frattini, T. (2018). Employment of undocumented immigrants and the prospect of legal status: evidence from an amnesty program. *ILR Review*, 71(4):853–881.
- Dipoppa, G. (2024). When migrants mobilize against labor exploitation: Evidence from the italian farmlands. *American Political Science Review*, pages 1–18.
- Elias, F., Monras, J., and Vázquez-Grenno, J. (2022). Understanding the effects of granting work permits to undocumented immigrants. Technical report, Working Paper.
- Kossoudji, S. A. and Cobb-Clark, D. A. (2002). Coming out of the shadows: Learning about legal status and wages from the legalized population. *Journal of Labor Economics*, 20(3):598–628.


References IV

Montalvo, J. G. (2011). Voting after the bombings: A natural experiment on the effect of terrorist attacks on democratic elections. *The Review of Economics and Statistics*, 93(4):1146–1154.

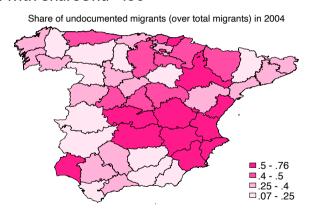
Serrano-Notivoli, R., Beguería, S., and de Luis, M. (2019). Stead: a high-resolution daily gridded temperature dataset for spain. *Earth System Science Data*, 11(3):1171–1188.

2005 Amnesty Program Return

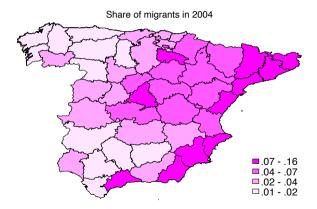


2005 Amnesty Program by Quartile Return

Non-EU Undocumented Migrants


- ShareUndnonEU_p = (Non-EU Migrants_p Work Permits_p)/Migrants_p
- Correlation with ShareUnd= .93

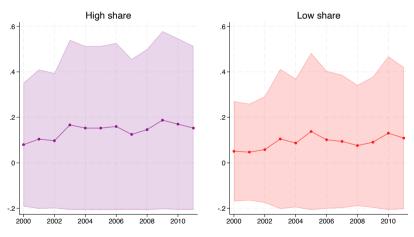
Measuring Undocumented Migrants


- ShareUndMig $_p = (Migrants_p Work Permits_p)/Migrants_p$
- Correlation with ShareUnd= .60

Measuring Undocumented Migrants

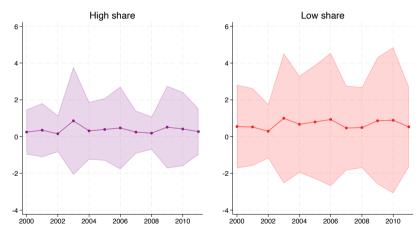
- ShareMig $_p = Migrants_p/Population_p$
- Correlation with ShareUnd = .90

Summary statistics for HRD Dummy Graph Return


	All p	All prov.		High share		share
	Mean	S.d.	Mean	S.d.	Mean	S.d.
2000	0.066	0.248	0.080	0.272	0.051	0.220
2001	0.076	0.266	0.104	0.306	0.047	0.212
2002	0.078	0.268	0.097	0.297	0.058	0.234
2003	0.137	0.344	0.167	0.373	0.105	0.307
2004	0.121	0.326	0.153	0.360	0.087	0.282
2005	0.145	0.353	0.153	0.360	0.138	0.345
2006	0.131	0.338	0.160	0.367	0.101	0.302
2007	0.110	0.313	0.125	0.331	0.094	0.293
2008	0.112	0.315	0.146	0.354	0.076	0.266
2009	0.140	0.347	0.188	0.391	0.091	0.288
2010	0.151	0.358	0.170	0.376	0.130	0.337
2011	0.131	0.338	0.153	0.360	0.109	0.312
Total	0.116	0.321	0.141	0.348	0.091	0.287

Summary statistics for Dd>35 Graph Return

	All p	orov.	High share		Low	share
	Mean	S.d.	Mean	S.d.	Mean	S.d.
2000	0.394	1.812	0.247	1.212	0.547	2.268
2001	0.433	1.810	0.347	1.467	0.522	2.109
2002	0.220	1.251	0.153	0.993	0.290	1.471
2003	0.926	3.242	0.858	2.936	0.996	3.538
2004	0.488	2.159	0.312	1.562	0.670	2.633
2005	0.589	2.486	0.389	1.693	0.797	3.095
2006	0.695	3.002	0.469	2.244	0.931	3.617
2007	0.353	1.813	0.243	1.164	0.467	2.300
2008	0.335	1.669	0.188	0.899	0.489	2.193
2009	0.684	2.898	0.514	2.240	0.862	3.450
2010	0.645	3.134	0.413	2.014	0.888	3.971
2011	0.397	1.778	0.271	1.256	0.529	2.188
Total	0.513	2.350	0.367	1.748	0.666	2.838


Summary statistics for HRD Dummy Return

Mean and 1 standard deviation

Summary statistics for Dd>35 Return

Mean and 1 standard deviation

Triple DiD Results - Dummy DV + Share of Undocumented Migrants Return

	(1)	(2)	(3)	(4)
	OLS	OLS	OLS	Logit
Days>35	0.017	-0.000	-0.004	0.067
	(0.015)	(0.011)	(0.023)	(0.061)
Days>35 × Post	0.009	0.014	0.010	0.050
	(0.015)	(0.010)	(0.018)	(0.066)
Days>35 \times Post \times ShareUnd	-0.995**	-0.858**	-1.145*	-4.844*
	(0.404)	(0.422)	(0.580)	(2.511)
Year×Month FE		√	√	√
Controls	\checkmark	\checkmark	\checkmark	\checkmark
May-Sep only			\checkmark	
R2	0.254	0.305	0.295	
Obs.	6768	6768	2820	6624

Triple DiD - Top 25% Undocumented Migrant Share

	(1)	(2)	(3)	(4)
	OLS	OLS	OLS	OLS
Dd>35	0.022***	0.005	0.008	0.007
	(0.007)	(0.008)	(800.0)	(0.013)
D 1 05 D 1	0.004		0.004	0.000
Dd>35 \times Post	0.001	0.009	0.004	-0.008
	(800.0)	(0.008)	(800.0)	(0.011)
$Dd>35 \times Post \times Top25\%$	0.006	0.007	0.006	-0.002
	(0.017)	(0.016)	(0.021)	(0.029)
Year×Month FE		✓	✓	√
Full controls			\checkmark	\checkmark
May-Sep only				\checkmark
R2	0.213	0.299	0.306	0.297
Obs.	6768	6768	6768	2820

Triple DiD - Donut Specification

	(1)	(2)	(3)	(4)
	OLS	OLS	OLS	OLS
Dd>35	-0.003	-0.003	-0.001	-0.006
	(800.0)	(800.0)	(0.012)	(0.019)
Dd>35 \times Post	0.015*	0.015*	0.011	0.003
	(800.0)	(0.008)	(0.010)	(0.020)
Dd>35 \times Post \times Top33%	-0.021	-0.021	-0.022	-0.028
	(0.015)	(0.015)	(0.027)	(0.028)
Year×Month FE	✓	✓	✓	✓
Full controls			\checkmark	\checkmark
May-Sep only				\checkmark
R2	0.342	0.342	0.352	0.344
Obs.	4464	4464	4464	1860

Triple DiD - Quartiles

	(1)	(2)	(3)
	OLS	OLS	OLS
ShUndQ= $2 \times Dd>35 \times Post$	-0.028**	-0.031**	-0.036**
	(0.014)	(0.013)	(0.015)
ShUndQ= $3 \times Dd > 35 \times Post$	-0.020*	-0.024**	-0.026
	(0.011)	(0.011)	(0.017)
0111 10 4 51 05 5	0.004		0.040
ShUndQ= $4 \times Dd>35 \times Post$	0.001	-0.002	-0.012
	(0.019)	(0.020)	(0.026)
Year×Month FE	✓	✓	✓
Full controls		\checkmark	\checkmark
May-Sep only			\checkmark
R2	0.303	0.247	0.306
Obs.	6768	6768	2820

Triple DiD - Clustering at the province level

	(1)	(2)	(3)	(4)
	OLS	OLS	OLS	OLS
Dd>35	0.020***	0.001	0.002	0.001
	(0.006)	(0.007)	(0.007)	(0.009)
Dd>35 \times Post	0.005	0.012*	0.010	0.004
	(0.006)	(0.007)	(0.007)	(0.009)
$Dd \mathord{>} 35 \times Post \times HiUnd$	-0.021*	-0.020*	-0.024**	-0.035**
	(0.011)	(0.012)	(0.011)	(0.014)
Year×Month FE		√	√	✓
Full controls			\checkmark	\checkmark
May-Sep only				\checkmark
R2	0.190	0.294	0.236	0.141
Obs.	6768	6768	6768	2820

Triple DiD - Bootstrap S.E.

	(1)	(2)	(3)	(4)
	OLS	OLS	OLS	OLS
Dd>35	0.020***	0.001	0.002	0.001
	(0.007)	(800.0)	(0.007)	(0.010)
Dd>35 × Post	0.005	0.012	0.010	0.004
	(0.007)	(800.0)	(0.007)	(0.010)
Dd>35 \times Post \times HiUnd	-0.021	-0.020	-0.024*	-0.035**
	(0.016)	(0.015)	(0.014)	(0.016)
Year×Month FE		√	✓	√
Full controls			\checkmark	\checkmark
May-Sep only				\checkmark
R2	0.190	0.294	0.301	0.298
Obs.	6768	6768	6768	2820

Standard errors from 200 bootstrap reps. clustered at the province level

Triple DiD Results - with Province X Post FE

	(1)	(2)	(3)	(4)
	OLS	OLS	OLS	OLS
Dd>35	0.001	0.001	-0.001	-0.000
	(0.007)	(0.007)	(0.010)	(800.0)
Dd>35 \times Post	0.011	0.011	0.006	0.014**
	(0.007)	(0.007)	(0.011)	(0.007)
Dd>35 \times Post \times HiUnd	-0.023**	-0.023**	-0.033**	
	(0.011)	(0.011)	(0.015)	
Dds 25 y Doot y Showelled				0.7//*
$Dd>35 \times Post \times ShareUnd$				-0.766*
				(0.387)
Year $ imes$ Month FE	\checkmark	\checkmark	\checkmark	\checkmark
Prov×Post FE	\checkmark	\checkmark	\checkmark	\checkmark
Full Controls		\checkmark	\checkmark	\checkmark
May-Sep only			\checkmark	
R2	0.303	0.303	0.300	0.308
Obs.	6768	6768	2820	6768

Note: controls include population (total and migrant) in 2003 and 2004, unemployment rate, employment in part-time, permanent, public, agricultural and hospitality jobs, average wage, days worked and a coastal dummy. Standard errors are clustered at the province level.

Triple DiD - Count DV

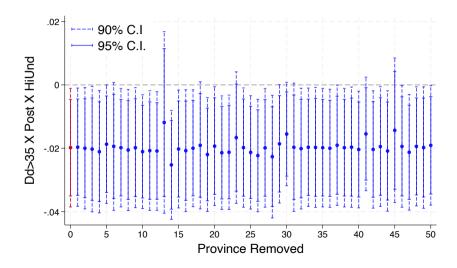
	(1)	(2)	(3)	(4)
	Linear	Linear	Neg. Bin.	Poisson
Dd>35	0.015*	0.042	0.195***	0.196***
	(0.008)	(0.037)	(0.038)	(0.038)
D 1 05 D 1	0.005	0.000	0.040*	0.070**
Dd>35 \times Post	0.005	-0.020	-0.060*	-0.072**
	(0.008)	(0.034)	(0.031)	(0.028)
Dd>35 \times Post \times HiUnd	-0.021**	0.008	0.000	0.006
	(0.008)	(0.030)	(0.040)	(0.040)
Year FE	Yes		Yes	Yes
Month FE	Yes		Yes	Yes
R2	0.268	0.295	0.280	
Obs.	6768	6768	6768	6624

Triple DiD Results - Intensive Margin (Log DV)

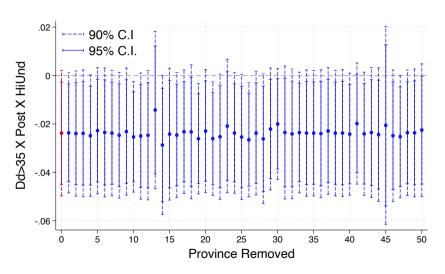
	(1)	(2)	(3)	(4)
	Linear	Linear	Log+1	Summer
Days>35	0.066***	0.037	0.010	0.029
	(0.016)	(0.022)	(0.012)	(0.027)
Days>35 × Post	-0.048***	-0.045**	0.003	-0.058**
	(0.016)	(0.021)	(0.012)	(0.022)
Days>35 \times Post \times HiUnd	0.026**	0.051*	-0.008	0.045
	(0.013)	(0.026)	(0.012)	(0.028)
Year × Month FE	No	Yes	Yes	Yes
R2	0.168	0.437	0.334	0.426
Obs.	788	763	6768	670

Triple DiD Results - Excluding 2008 Return

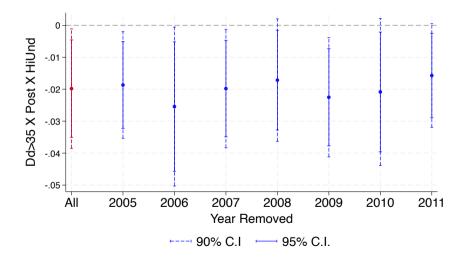
	(1)	(2)	(3)	(4)	(5)
	OLS	OLS	OLS	OLS	Logit
Dd>35	0.020**	0.001	0.002	0.001	0.082
	(0.008)	(0.008)	(0.011)	(0.013)	(0.064)
Dd>35 \times Post	0.003	0.011	0.009	0.002	0.040
	(0.008)	(0.008)	(0.010)	(0.012)	(0.077)
$Dd \text{>} 35 \times Post \times HiUnd$	-0.018**	-0.017*	-0.021*	-0.027	-0.169*
	(0.009)	(0.010)	(0.013)	(0.017)	(0.086)
Year×Month FE		✓	√	✓	✓
Full controls			\checkmark	\checkmark	\checkmark
May-Sep only				\checkmark	
R2	0.187	0.293	0.302	0.300	
Obs.	6204	6204	6204	2585	6072

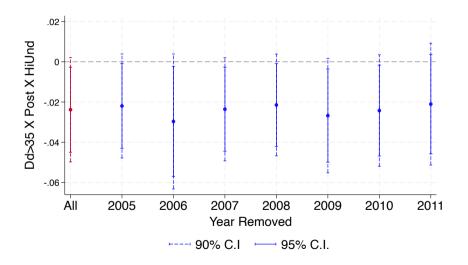

Triple DiD Results - Placebo Outcomes Return

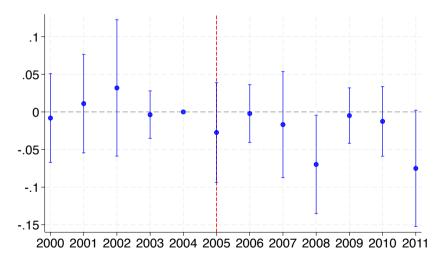
	(1)	(2)	(3)	(4)	(5)	(6)
	Cardio	Resp.	G.u.	lnj.	Intox.	Total
Dd>35	-0.006*	-0.010	-0.007	-0.001	0.024***	-0.003**
	(0.003)	(0.007)	(0.004)	(0.005)	(0.005)	(0.002)
D 1 05 D 1	0.007	0.000	0.004	0.000	0.000***	0.000
Dd>35 \times Post	0.007	0.009	0.001	-0.003	-0.028***	0.003
	(0.005)	(0.007)	(0.005)	(0.005)	(0.008)	(0.002)
Dd>35 \times Post \times HiUnd	-0.006	-0.009	-0.003	0.000	-0.010	-0.002
	(0.005)	(800.0)	(0.005)	(0.005)	(0.021)	(0.002)
Year×Month FE	√	√	√	√	✓	✓
R2	0.974	0.971	0.967	0.956	0.740	0.994
Obs.	6767	6768	6768	6768	6075	6768


Triple DiD Results - Placebo Outcomes with Controls Return

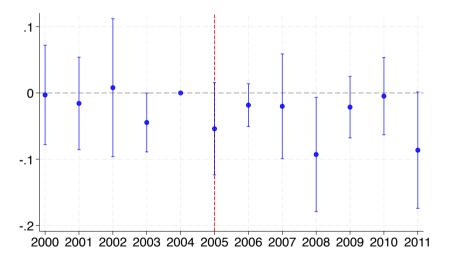
	(1)	(2)	(3)	(4)	(5)	(6)
	Cardio	Resp.	G.u.	lnj.	Intox.	Total
Dd>35	0.002	-0.008	-0.009**	-0.002	0.019**	-0.003**
	(0.003)	(0.006)	(0.004)	(0.005)	(0.009)	(0.001)
Dd>35 × Post	-0.007*	0.007	0.008*	-0.001	-0.022*	0.003
	(0.004)	(0.006)	(0.004)	(0.005)	(0.013)	(0.002)
$Dd \mathord{>} 35 \times Post \times HiUnd$	0.002	-0.011	-0.008*	-0.006	0.001	-0.003*
	(0.004)	(0.006)	(0.005)	(0.006)	(0.017)	(0.002)
Year×Month FE	✓	✓	✓	✓	✓	✓
Full Controls	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
R2	0.976	0.972	0.969	0.958	0.747	0.995
Obs.	6767	6768	6768	6768	6075	6768


Triple DiD Results - Leave Out Provinces Return

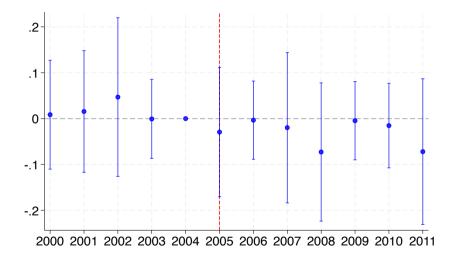

Triple DiD Results - Leave Out Provinces with Controls Return


Triple DiD Results - Leave Out Years Return

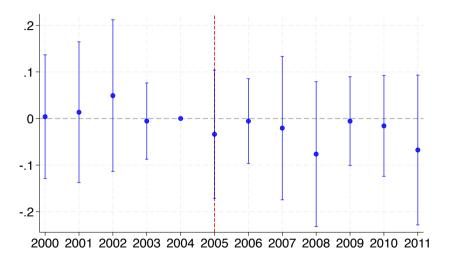
Triple DiD Results - Leave Out Years with Controls Return



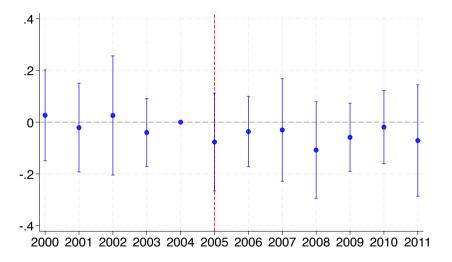
3DiD coefficients w/ dummy DV - No controls



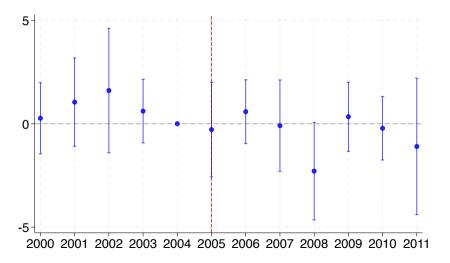
3DiD coefficients w/ dummy DV - Only summer



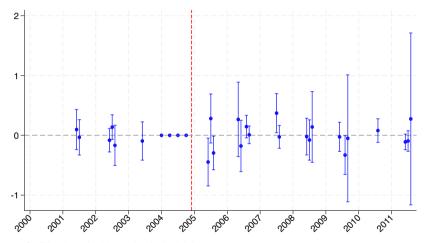
3DiD coefficients w/ dummy DV - With controls



3DiD coefficients w/ dummy DV - With full controls



3DiD coefficients w/ dummy DV - Only summer + controls



3DiD coefficients w/ dummy DV - With continuous measure of undocumented migrants

3DiD coefficients w/ dummy DV

Coefficients larger than I1I are omitted for visual clarity.

Simple DiD Results - Other discharges

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	HRD	Cardio	Resp.	G.u.	lnj.	Intox.	Total
$Post \times HiUnd$	0.116	0.027	0.054*	0.136***	0.130***	-0.212***	0.084***
	(0.070)	(0.038)	(0.027)	(0.035)	(0.046)	(0.066)	(0.018)
Mean DV	0.324	4.883	5.020	5.011	5.104	1.728	7.762
R2	0.293	0.117	0.503	0.379	0.383	0.048	0.505
Obs.	764	6767	6768	6768	6768	6073	6768

Standard errors are clustered at the province level

^{*} p<.1, ** p<.05, *** p<.01

Simple DiD Results - Other discharges with controls

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	HRD	Cardio	Resp.	G.u.	lnj.	Intox.	Total
$Post \times HiUnd$	0.037	-0.008	0.040	0.065	0.166*	-0.458***	0.042
	(0.182)	(0.056)	(0.046)	(0.076)	(0.088)	(0.107)	(0.036)
Controls	√	√	√	√	√	✓	√
Mean DV	0.324	4.883	5.020	5.011	5.104	1.728	7.762
R2	0.382	0.975	0.971	0.967	0.955	0.738	0.994
Obs.	739	6767	6768	6768	6768	6073	6768

Standard errors are clustered at the province level

^{*} p<.1, ** p<.05, *** p<.01

Simple DiD Results - Other discharges with full controls

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	HRD	Cardio	Resp.	G.u.	lnj.	Intox.	Total
$Post \times HiUnd$	-0.051	-0.017	0.030	0.054	0.122	-0.456***	0.025
	(0.151)	(0.054)	(0.042)	(0.067)	(0.081)	(0.092)	(0.035)
Full Controls	√	√	√	√	√	√	√
Mean DV	0.324	4.883	5.020	5.011	5.104	1.728	7.762
R2	0.387	0.975	0.971	0.968	0.956	0.741	0.995
Obs.	739	6767	6768	6768	6768	6073	6768

Note: controls include population (total and migrant) in 2003 and 2004, unemployment rate, employment in part-time, permanent, public, agricultural and hospitality jobs, average wage, days worked and a coastal dummy. Standard errors are clustered at the province and year-month level.

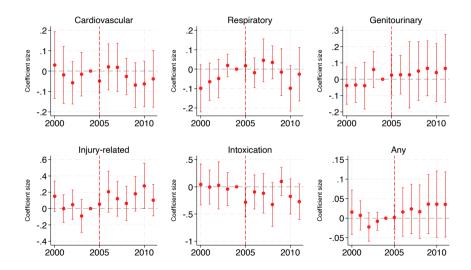
Simple DiD Results - Other discharges with full controls and continuous share of undocumented migrants

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	HRD	Cardio	Resp.	G.u.	lnj.	Intox.	Total
Post × ShareUnd	-2.655	2.088*	2.278*	3.899***	2.254	0.545	2.656***
	(2.057)	(1.124)	(1.133)	(1.336)	(2.458)	(4.437)	(0.677)
Full Controls	√	√	√	✓	√	✓	√
Mean DV	0.324	4.883	5.020	5.011	5.104	1.728	7.762
R2	0.387	0.975	0.971	0.968	0.956	0.739	0.995
Obs.	739	6767	6768	6768	6768	6073	6768

Standard errors are clustered at the province level

^{*} p<.1, ** p<.05, *** p<.01

Simple DiD Results - Other discharges, inverse hyperbolic sine transformation on DVs with full controls


	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	HRD	Cardio	Resp.	G.u.	lnj.	Intox.	Total
$Post \times HiUnd$	0.005	-0.016	0.030	0.054	0.122	-0.259*	0.025
	(0.023)	(0.054)	(0.042)	(0.067)	(0.081)	(0.132)	(0.035)
Full Controls	√	√	√	√	✓	√	√
Mean DV	0.130	5.575	5.714	5.704	5.797	2.202	8.455
R2	0.279	0.973	0.971	0.968	0.956	0.720	0.995
Obs.	6768	6768	6768	6768	6768	6768	6768

Standard errors are clustered at the province level

^{*} p<.1, ** p<.05, *** p<.01

Simple DiD Results - Event study

